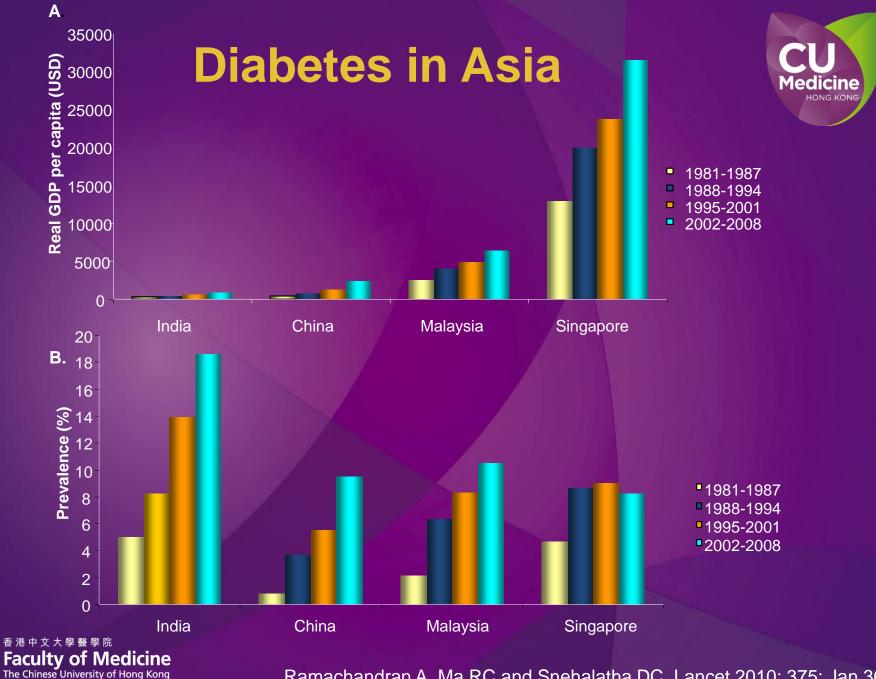
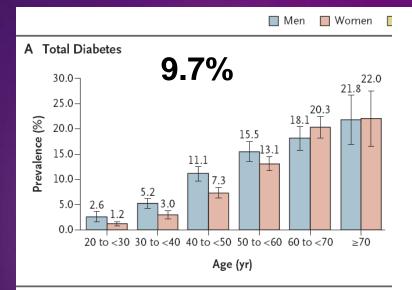
13th December, 2015 1st ICCN, Hong Kong

Genomic studies in Diabetic Nephropathy

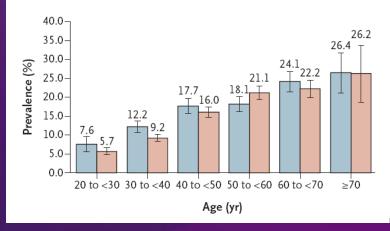
Ronald C.W. Ma Professor Department of Medicine and Therapeutics The Chinese University of Hong Kong Hong Kong

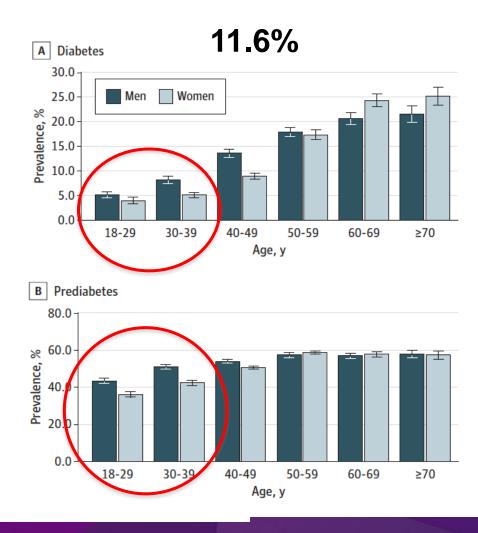


香港中文大學醫學院 Faculty of Medicine The Chinese University of Hong Kong

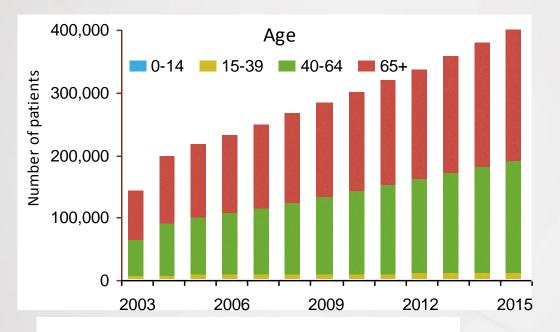

香港糖尿病及肥胖症研究所 HONG KONG INSTITUTE OF DIABETES AND OBESITY

Prevent o Control o Cure




Ramachandran A, Ma RC and Snehalatha DC, Lancet 2010; 375: Jan 30

Prevalence of DM in China



Xu et al, J Am Med Asso 2013; Sept 4

Yang W et al, NEJM 2010; March 25

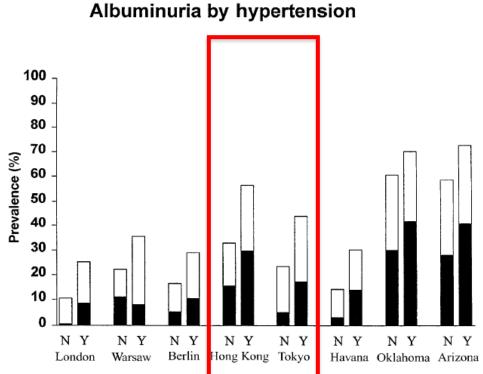
Cardiac and Renal Complications are the Major Healthcare Burden from Diabetes

Hong Kong

Affects >10% of population 1.2million out-patient attendance/ year 280,000 hospital admissions/yr Estimated costs: HKD 5 billion/yr Majority due to diabetic complications

~20,000 new cases per year

> 50% of DM patients die from cardiac and renal complications


Marked variation in the risk of diabetic nephropathy- WHO MSVDD

Microalbuminuria

Macroalbumininuriia

2033 patients from 8 centres

Main predictors: Mean BP (all centres) Retinopathy (not HK, Arizona, Warsaw) Insulin treatment (HK, Tokyo, Berlin, Oklahoma) CHD (HK, Arizona, London)

Bennett PH et al, Diabetologia 2001

Overview

Genetic markers for diabetic nephropathy

Diabetic kidney complications

- Candidate gene studies
- Bioinformatics approach
- GWAS
- Future directions

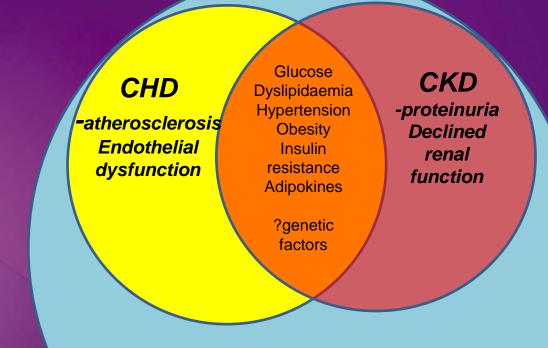
Hyperglycaemia (+ Dyslipidaemia, Hypertension)

Activation of pathogenetic Pathways

Aldose reductase AGE production Protein kinase C Inflammation RAS + novel pathways Genetic variants Epigenetic effects Environment Treatments

Cellular death Abnormal growth Fibrosis

Loss of structure and function


Cardio-renal complications

Loss of protective Pathways

Reduced insulin action VEGF PDGF Anti-inflam factors Adiponectin

Ma RC. J Diabetes Investig 2015

Similarities And Differences

Diabetic Complications

Ma RC. J Diabetes Investig 2015

The Hong Kong Diabetes Registry

Recruitment (1995-2005)

Comprehensive assessment (every 12-18 months)

Risk factors

30-50 ambulatory DM patients/week

BMI, Waist circumference, BP Glycemic control (PFG, HbA_{1c}) full lipid profile (TC, HDL-C, TG, LDL-C) Albuminuria (e.g. spot urine albumin:creatinine ratio) —

GPs

Community Specialty clinics

Complications

Eye (visual acuity and fundoscopy) Feet (skin changes, sensation and pulses) Cardiovascular (ECG, stress test as appropriate) Renal function test Outcome Documentation

Drug use

Outcomes: ESRF Stroke Death CHD CHF CANCER

>10,000 patients Follow-up >8 yr Biobanked samples

Yang XL et al, Diabetologia 2006; 49: 2299-308 Yang XL et al, Diabetes Care 2007; 30: 65-70 Yang XL et al, Arch Intern Med 2008

The Burden of Diabetic Complications-The Hong Kong Diabetes Registry (1995-2005)

> 7,000 DM patients, mean duration of follow-up: 6 years

Death	10.1% (768)
Coronary heart disease	6.7% (507)
Cardiac failure	4.5% (340)
Stroke	5.6% (422)
End stage renal disease	10.5% (799)
Cancer	5.4% (413)
Composite events	32.9% (2492)

Endpoints captured in 2005, 2009, 2014

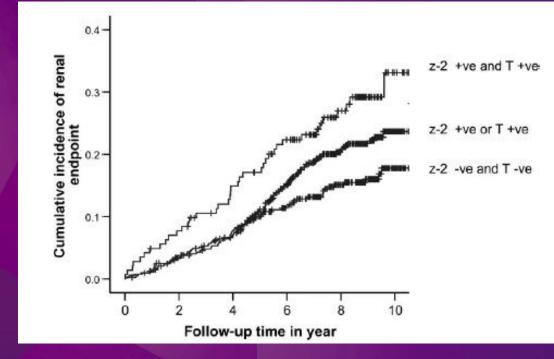
Yang et al, Arch Intern Med 2008; Am J Cardiol 2008, Diabetes Care 2007, Diabetologia 2007

ACE I/D polymorphism and DM complications

<u>ACE I/D polymorphism</u> increases risk of renal endpoint 3-fold	Variable	HR (95%CI)	Р
DD carriers	RAS inh + II genotype	0.52 (0.3, 0.92)	0.02
P=0.004 DI carriers DI carriers II carriers	RAS inh + DI genotype	0.43 (0.25, 0.72)	0.001
	RAS inh + DD genotype	0.95 (0.42, 2.12)	0.91
0 10 20 30 40 50 60 70 80 90 time(months)			
1281 T2D patients, follow-up 4 years			

Wang Y et al, Diabetes Care 2004

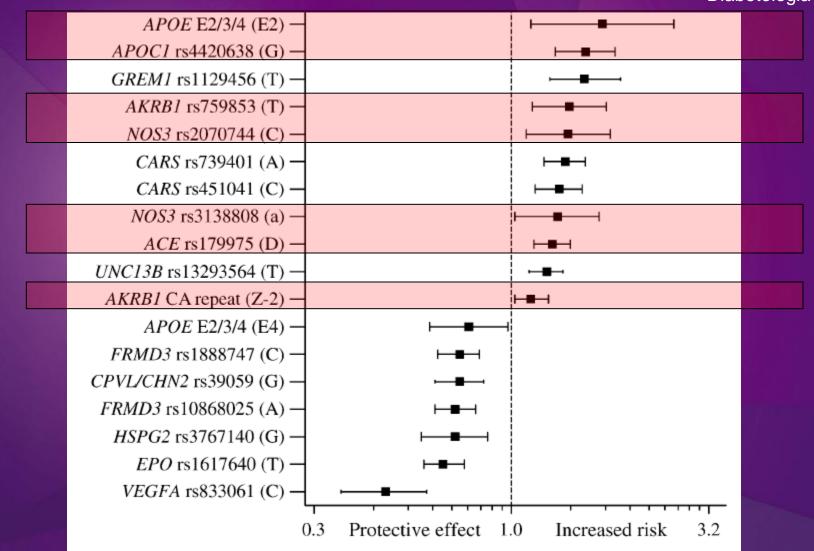
So WY, Ma RC et al, Kidney Int 2006; 69: 1438-44


Genetic variants in the Aldose Reductase Pathway predicts DM complications

1,327 subjects with T2DM Excluded those with Baseline CKD, CHD

1,074 included in analysis

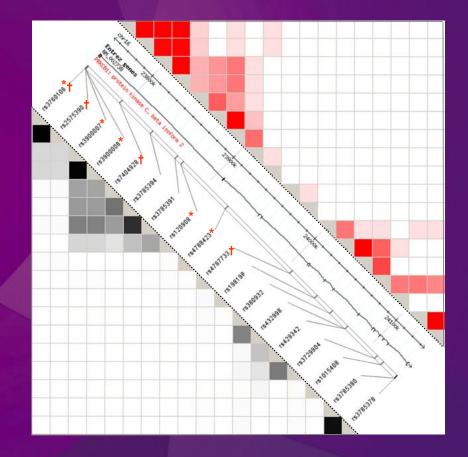
ALR2 z-2 allele ↑ risk of renal HR 1.53 (1.14-2.05)


Or combined cardio-renal Endpoints HR 1.49 (1.14-1.95)

So WY et al Diabetes Care 31: 2148-2153, 2008

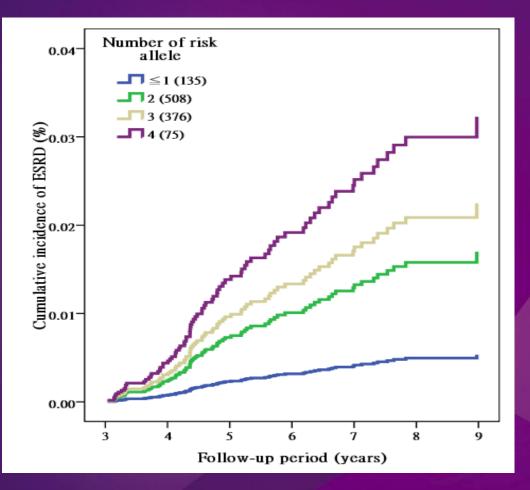
Few known genetic variants for diabetic kidney disease

AL Mooyaart et al Diabetologia 2011


Association study of *PRKCB1* and diabetic nephropathy

Prospective study of 1172 patients T2 DM free of renal disease Mean duration of follow-up 7.9 years Endpoints:

90 out of 1172 developed ESRD18 Tag SNPs


Cox-proportional hazard regression model

Adjusted for conventional Risk factors

Structure of PRKCB1 gene

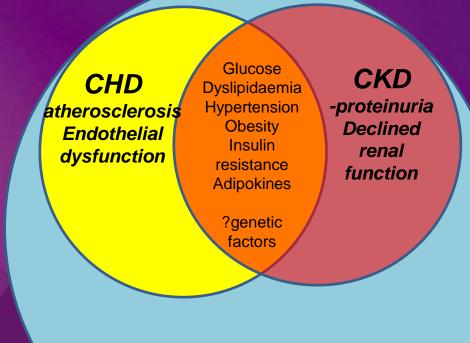
Variants in PRKCB1 predict new-onset ESRD 90 out of 1172 developed ESRD during 7.9 yr follow-up

The HR for ESRD increased with increasing number of risk alleles (P=0.0007) in the joint effect analysis.

The adjusted risk for ESRD was 6.04 (2.00-18.31) for patients with four or more alleles compared to patients with one or less risk allele

Adjusted for conventional risk factors (age, gender, duration of DM, SBP, DBP, HbA1c, Cholesterol, Ln AER, eGFR, retinopathy, use of ACEI.ARB)

Ma RC et al, JAMA 2010, Aug 25


How to identify predictors from a dataset containing clinical and genetic variables?

Traditional analyses

Neglects potential interaction or multiplicative effect between variables

Are subjects with increased risk of DM complications enriched for SNPs related to diabetes or related traits?

Diabetic Complications

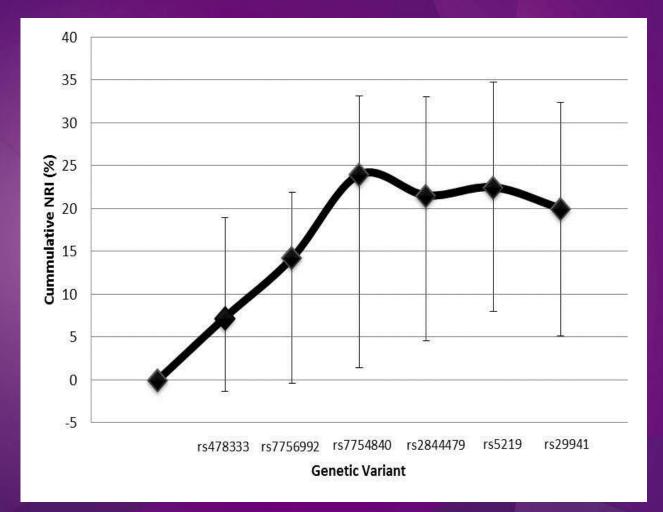
Identifying predictors of diabetic kidney disease

2,755 subjects from registry with complete data and genotype data
673 (24.4%) developed CKD during median FU 7.7years
36 SNPs relating to T2DM, obesity, glucose traits
25 clinical variables including age, sex, eGFR, as well as drug use information

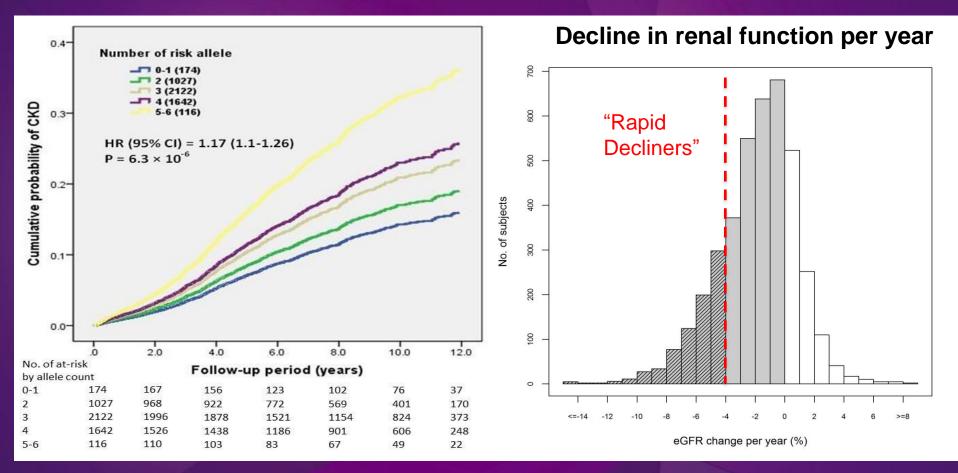
1) a stepwise model selection procedure based on the Akaike Information Criterion (AIC) was repeatedly conducted (using 200 subsample aggregation each covering 2/3 of the cases and controls);

2) the category-free net reclassification improvement (NRI) was employed to evaluate the contribution of top SNPs towards the prediction model;

3) the associations of identified genetic variants with outcomes were further validated in independent samples from collaborators


	Inclusion Frequency (%)				
Selected Variable	genetic model	clinical model	clinico-genomic model		
ACR	/				
Age	/				
eGFR	/				
HbA1c	/				
Insulin	/				
Sensory neuropathy	/				
ACEIs or ARBs	/				
CHD history	/				
rs478333 (<i>G6PC2</i>)	63.5				
Retinopathy	/				
rs7756992 (<i>CDKAL1</i>)	5				
Triglyceride	/				
rs7754840 (<i>CDKAL1</i>)	2				
rs2844479 (<i>LST1/AIF1</i>)	74				
rs5219 (<i>KCNJ11</i>)	3				
rs29941 (<i>KCTD15</i>)	11.5				
LDL cholesterol	/				
rs4430796 (<i>HNF1B</i>)	59.5				
AIC value*	6496(7.8)				

	Inclusion Frequency (%)				
Selected Variable	genetic model clinical model		clinico-genomic model		
ACR	/	100			
Age	/	100			
eGFR	/	100			
HbA1c	/	100			
Insulin	/	100			
Sensory neuropathy	/	100			
ACEIs or ARBs	/	100			
CHD history	/	99			
rs478333 (<i>G6PC2</i>)	63.5	/			
Retinopathy	/	80.5			
rs7756992 (<i>CDKAL1</i>)	5	/			
Triglyceride	/	68			
rs7754840 (<i>CDKAL1</i>)	2	/			
rs2844479 (<i>LST1/AIF1</i>)	74	/			
rs5219 (<i>KCNJ11</i>)	3	/			
rs29941 (<i>KCTD15</i>)	11.5	/			
LDL cholesterol	/	53			
rs4430796 (<i>HNF1B</i>)	59.5	/			
AIC value*	6496(7.8)	5736(28.9)			

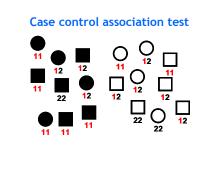

	Inclusion Frequency (%)				
Selected Variable	genetic model	clinical model	clinico-genomic		
	genetic model		model		
ACR	/	100	100		
Age	/	100	100		
eGFR	/	100	100		
HbA1c	/	100	100		
Insulin	/	100	100		
Sensory neuropathy	/	100	100		
ACEIs or ARBs	/	100	99.5		
CHD history	/	99	99.5		
rs478333 (<i>G6PC2</i>)	63.5	/	95.5		
Retinopathy	/	80.5	80.5		
rs7756992 (<i>CDKAL1</i>)	5	/	67		
Triglyceride	/	68	65.5		
rs7754840 (<i>CDKAL1</i>)	2	/	64		
rs2844479 (<i>LST1/AIF1</i>)	74	/	59.5		
rs5219 (<i>KCNJ11</i>)	3	/	59		
rs29941 (<i>KCTD15</i>)	11.5	/	58		
LDL cholesterol	/	53	57.5		
rs4430796 (<i>HNF1B</i>)	59.5	/	4		
AIC value*	6496(7.8)	5736(28.9)	5722(29.4)		

	Inclusion Frequency (%)				
Selected Variable	genetic model	clinical model	clinico-genomic model		
ACR	/	100	100		
Age	/	100	100		
eGFR	/	100	100		
HbA1c	/	100	100		
Insulin	/	100	100		
Sensory neuropathy	/	100	100		
ACEIs or ARBs	/	100	99.5		
CHD history	/	99	99.5		
rs478333 (<i>G6PC2</i>)	63.5	/	95.5		
Retinopathy	/	80.5	80.5		
rs7756992 (<i>CDKAL1</i>)	5	/	67		
Triglyceride	/	68	65.5		
rs7754840 (<i>CDKAL1</i>)	2	/	64		
rs2844479 (<i>LST1/AIF1</i>)	74	/	59.5		
rs5219 (<i>KCNJ11</i>)	3	/	59		
rs29941 (<i>KCTD15</i>)	11.5	/	58		
LDL cholesterol	/	53	57.5		
rs4430796 (<i>HNF1B</i>)	59.5	/	4		
AIC value*	6496(7.8)	5736(28.9)	5722(29.4)		

Evaluating the contribution of selected genetic variants to the prediction model

Variants related to glucose metabolism predicts development of CKD in T2DM

rs478333 of *G6PC2* rs7754840 of *CDKAL1* rs7756992 of *CDKAL1*


Jiang G et al, Kidney Int, in press

DM complications	Phenotype	Study type	Ethnic group	Polymorphism	Candidate gene/nearest gene	Chrm location	References
Type 2 diabetes mellitus	Nephropathy	Candidate gene	Multi-ethnic	rs179975	ACE	17q23	Mooyart et al., Diabetologia (2011)
		Candidate gene		rs4646994 rs 4344	ACE	17q23	Ng et al. (2005), Wang et al. (2012)
		Candidate gene	Asian	rs4646994	ACE	17q23	Zhong et al, JRAAS (2015)
			Asian	rs4646994	ACE	17q23	Zhong et al, JRAAS (2015)
			(incident DN)				
				rs759853	Aldose reductase	7q35	So et al., Diabetes Care (2008)
				Microsatellite	Aldose reductase	7q35	So et al., Diabetes Care (2008)
					APOE	19q13	
		Candidate gene	Multi-ethnic	rs1801282	PPARG	3p25	Herrmann <i>et al.</i> , Diabetes (2002); Liu <i>et al.,</i> Diabetes Care (2010)
		Candidate gene	Japanese	rs2237897	KCNQ1	11p15	Ohshige et al, Diabetes Care (2010)
		-			APOE	19q13	Li et al., Mol Biol Rep (2011)
			Multi-ethnic	D185880	CNDP1	18q22	Janssen et al., Diabetes (2005);
							Mooyart et al, Diabetologia (2011)
		Candidate gene	European	rs1799883	FABP2	4q28	Canani et al., Diabetes (2005)
		Candidate gene	European	rs451041	CARS	11p15	Pezzolesi et al, Kidney Int (2011)
		Candidate gene		rs1411766		13q	Pezzolesi et al, Kidney Int (2011)
		Candidate gene	European	rs1531343	HMGA2	12q15	Alkayyali et al., Diabetologia (2013)
		Replication	Japanese	rs1411766	Near IRS2	13q	Maeda et al., Diabetes (2010)
		GWAS	Japanese	Arg913Gln	SLC12A3	16q13	Tanaka et al., Diabetes (2003)
		GWAS	Japanese	rs741301	ELMO1	7p14	Shimazaki <i>et al.,</i> Diabetes (2005)
		GWAS	Japanese	rs2268388	ACACB	12q24.1	Maeda et al., PLoS Genet (2010)
	ESRD	Candidate gene	Multi-ethnic	rs4646994	ACE	17q23	Yu et al, Nephrology (2012)
		Candidate gene	Asian	rs4646994	ACE	17q23	Yu et al, Nephrology (2012)
		Candidate gene	Chinese	rs3760106	PRKCB1	16p11	Ma et al, JAMA (2010)
		Candidate gene	African American	rs7754586	ENPP1	6q24-27	Keene et al., Diabetes (2008)
		Candidate gene	African American	rs4478844	OR2AK2	1q44	Cooke Bailey et al, Hum Genet (2014)
		Candidate gene	Euriopean	rs3747154	LIMK2	22q12	Cooke Bailey et al, Hum Genet (2014)
		Replication	European	rs11769039	ELMO1	7p14	
		Replication	African American	rs1345365	ELMO1	7p14	Leak et al., Ann Hum Genet (2009)
	ESRD in type 2	GWAS	Pima Indians	rs2720709	PVT1	8q24	Hanson et al., Diabetes (2007)
	diabetes mellitus	Resequencing		rs2648875	PVT1	8q24	Hanson et al., Diabetes (2007)

CHD, coronary heart disease; CV, cardiovascular; DM, diabetes mellitus; ESRD, end-stage renal disease; GWAS, genome-wide association studies.

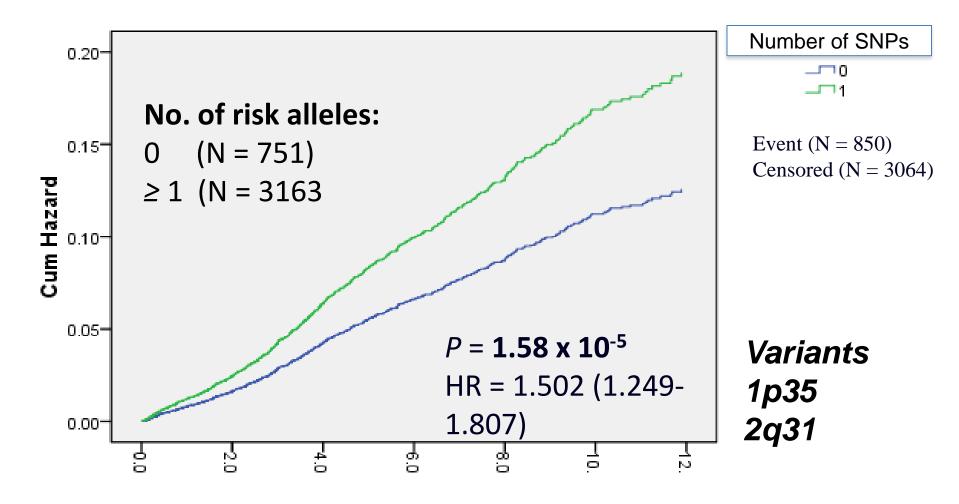
Ma RC. J Diabetes Investig 2015

Identification of novel genetic predictors of DMN in Chinese by GWAS

Select 400 cases without DN

Matched for duration of DM, age using prospective design

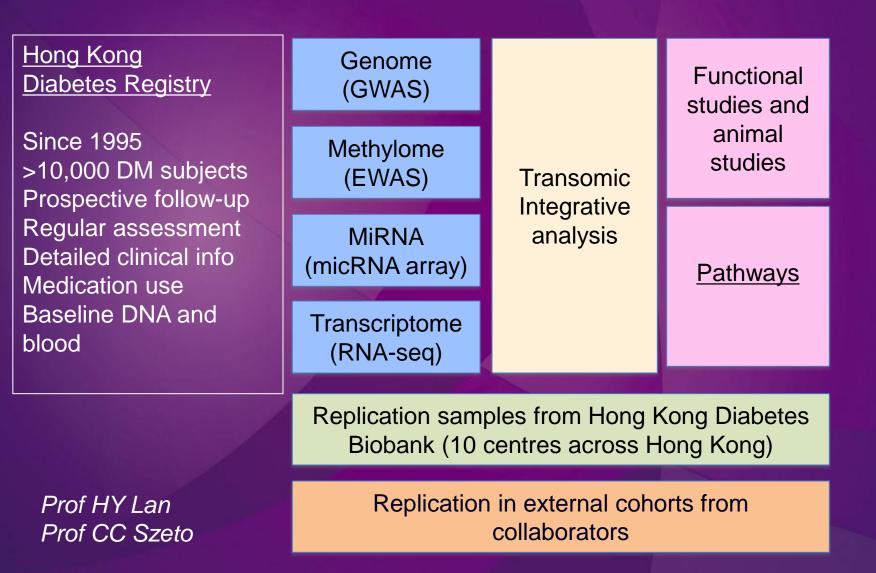
200 cases developed DN 200 cases no DN on FU from database Genome-wide genotyping using high density chips (Illumina 610 Quad)


Quality control
 Marker quality control
 Population substructure

Preliminary data for top association signals Plan for future Replication studies

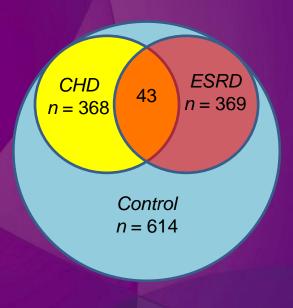
Supported by the Innovation and Technology Fund

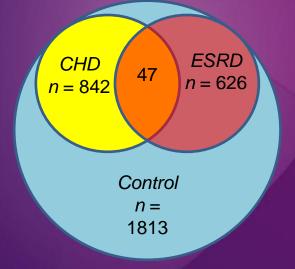
Joint analysis of top 2 replicated SNPs

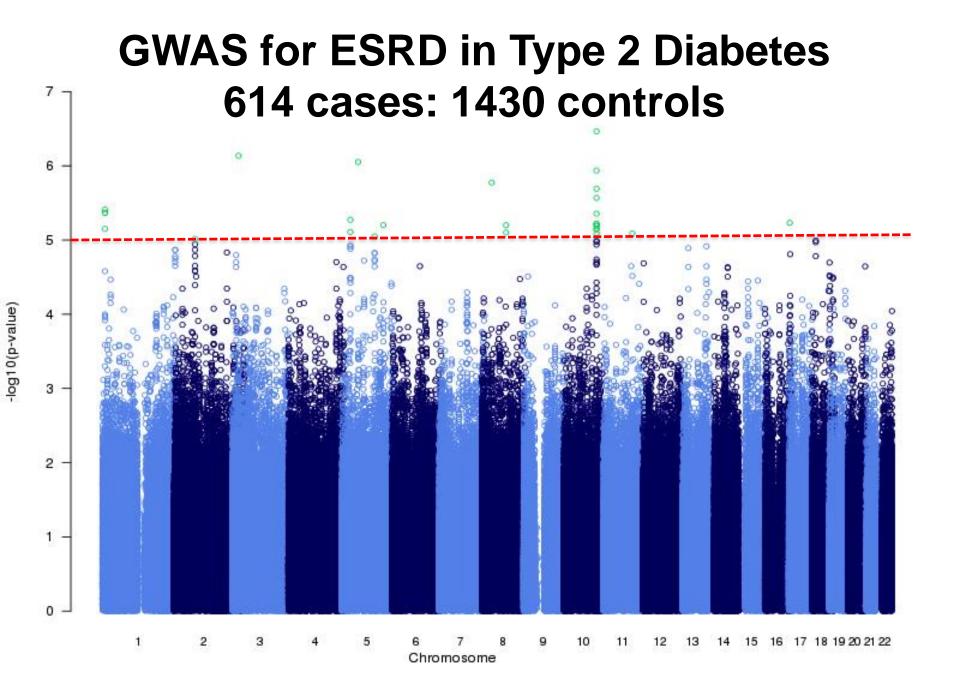

Hazard Function for patterns 1 - 2

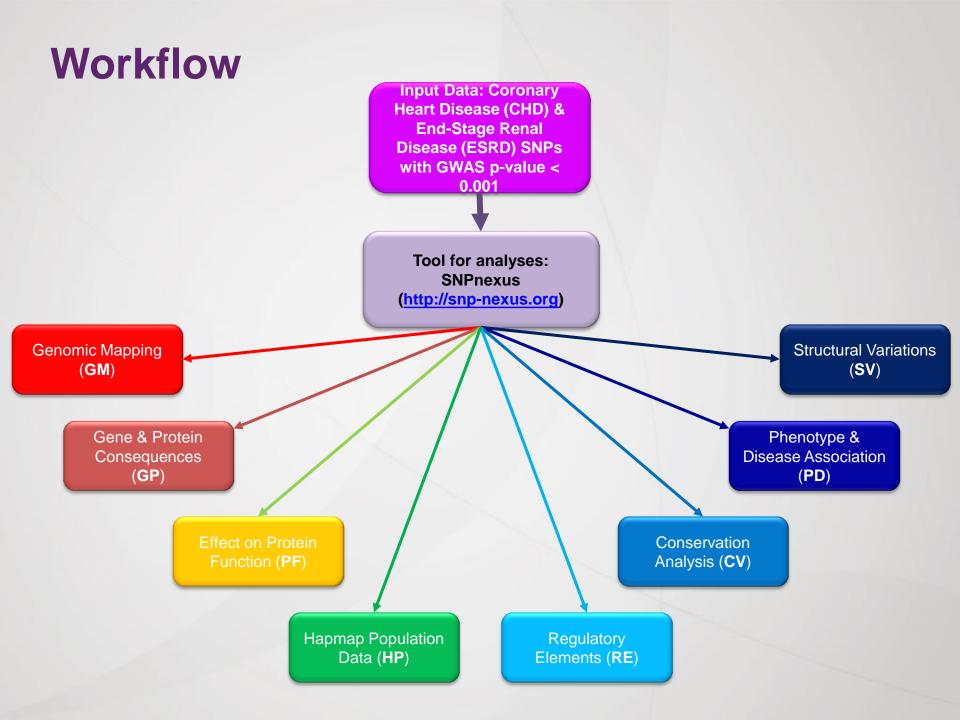
Abstract presentation EASD 2014

Theme-based Research Scheme on DM cardio-renal complications

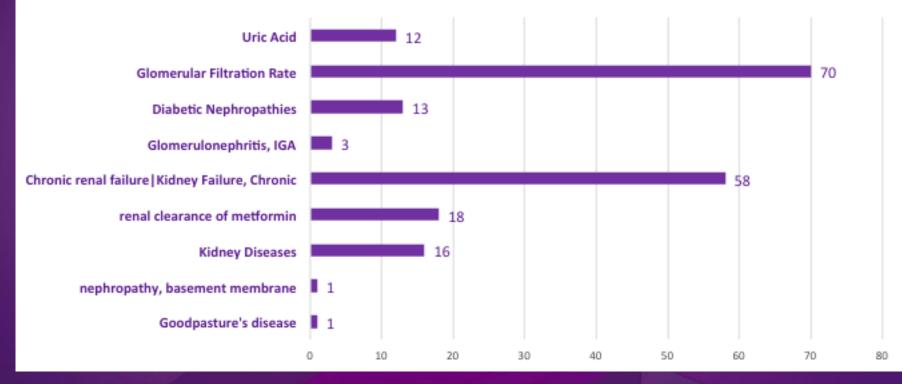


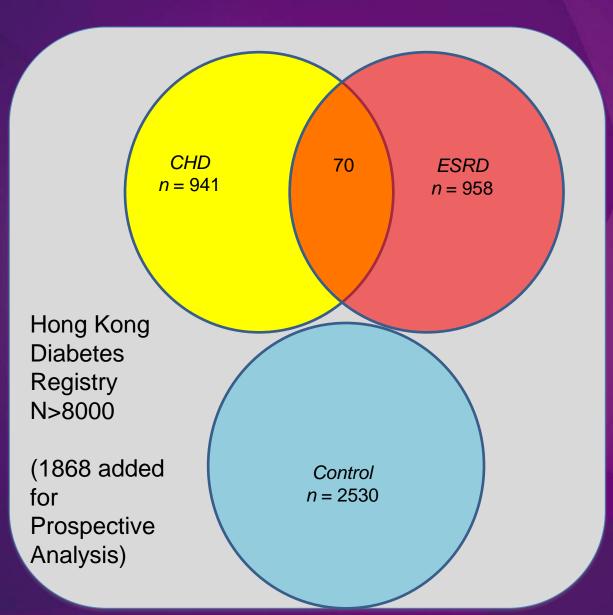

GWAS Genetic markers


Whole-genome genotyping Cover 2.5m+ genetic variants 1st phase 3008 sample Total > 6,500 samples


EWAS Epigenetic markers

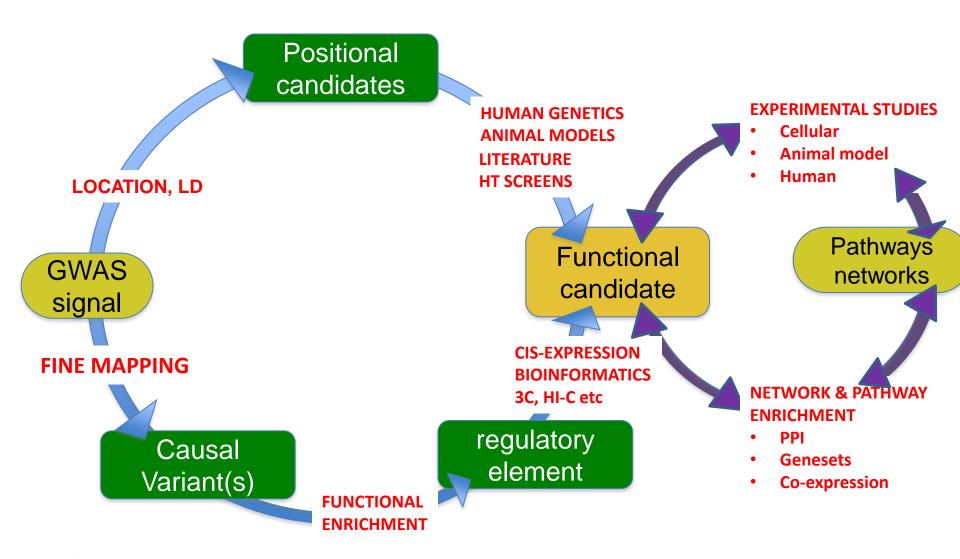
Epigenome-wide association 485K methylation sites Incident DKD or CHD





Totally 154 of the top ESRD SNPs were classified to 9 phenotypes in RENAL disease class

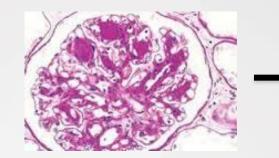
9 Phenotypes in Renal Disease Class


GWAS (phase 1+2=7003)

ESRD: *n* = 1028 1. ESRD endpoint (till 2013); no CVD and ESRD history 2. ESRD history; no CVD history 3. Complete phenotype data

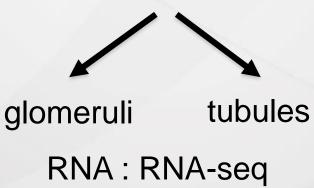
<u>Control: *n* = 2530</u>

- 1. no CVD and CKD history
- 2. no CVD and CKD endpoint (till 2013)
- 3. have lab test results
- Follow-up + duration of DM ≥10 years
- 5. Complete phenotype data



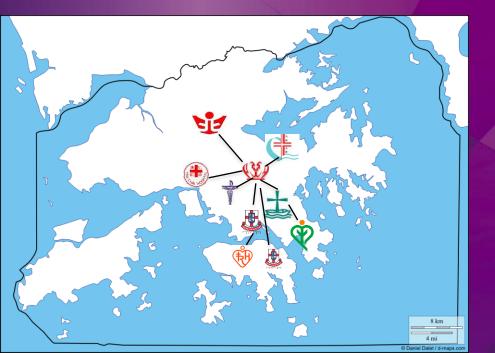
Adapted from McCarthy MI

Identifying gene changes in DM nephropathy



Recruitment Consented

Call back DM complication sx Blood taking


Laser-capture Microdissection

Whole blood DNA Methylation array Genotyping miRNA

10 hospitals across different regions in Hong Kong
Aim to recruit over >10,000 Chinese patients with T2DM
Baseline clinical information at complications screen
Follow-up for development of diabetic complications, tx failure
Recruited over 6,000 patients

	With CKD	W/out CKD
N	1109 (26.7%)	3033
M/F	677/ 432	1742/ 1291
Age	67.2	58.6

 Genetic studies have identified few genetic factors associated with the risk of diabetic kidney disease

 Novel data-mining approaches may uncover association not previously identified using conventional approaches

 Genetic predictors of DM complications may aid identification of high-risk subjects

 Translation to better management of diabetes and associated risk factors and provide novel drug targets

Lan Hui-yao Huang Yu Juliana Chan Brian Tomlinson Weichuan Yu Si Lok Stephen Tsui Szeto Cheuk Chun Ting Fung Chan Kevin Yip Xiaodan Fan Nelson Tang Wing Yee So + other team members

HK Diabetes Biobank: CC Chow Wing Yee So Risa Ozaki CC Tsang KP Lau SC Siu Jenny Leung MW Tsang IT Lau KF Lee Vincent Yeung June Li

Acknowledgement

Acknowledgement

Oxford University, UK -Mark McCarthy

Joslin Diabetes Center, Boston, USA

- George King

Michigan University, USA

- Mike Boehnke

Wake Forest University, USA - Maggie Ng

University of Sydney, Australia

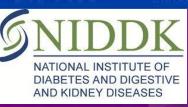
- Tony Keech
- Alicia Jenkins

Baker IDI, Melbourne, Australia -Sam El-Osta -Mark Cooper

Steno Diabetes Center, Denmark - Bendix Carstensen Shanghai Jiaotong University, China -Cheng Hu, Weiping Jia

Singapore National University -ES Tai

C 大學教育資助委員會 University Grants Committee


Innovation and Technology Fund Innovation and Technology Commission The Government of the Hong Kong Special Administrative Region

Research Fund Secretariat Food and Health Bureau The Government of the Hong Kong Special Administrative Region

EFSD

European Foundation for the Study of Diabetes

Theme-based research scheme (T12-402/13N) CUHK (Focused Innovation Scheme) Liao Wun Yuk Memorial Fund, HKFRDD

Thank you

Contact: rcwma@cuhk.edu.hk